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Abstract

Bent Boolean functions are important in the encoding/decpdf secure messages. Because they
are the most nonlinear of all functions, they are the leastesptible to linear attack. However, bent
functions are rare and difficult to discover. The only knowewwo enumerate all bent functions is by
a sieve in which many prospective functions are tested.

This is a tutorial description of the process of bent Booliauttion discovery by a reconfigurable
computer. Specifically, we discuss the use of SRC Compu&RE€-6 reconfigurable computer in
sieving through a large number of functions. We show why phéxess is much faster than on a con-
ventional computer (up to 60,000 times), and we discussithelar pipeline as a method to improve
the throughput even further. The circular pipeline takesaathge of the fact that most functions pass
not even one test for bentness. The improvement in throughito the circular pipeline depends on
the relationship between distances among functions, siapproximately 500 times better than our
present throughput.

1 Introduction

In ancient times, the encryption of messages was likely & Ih@en as simple as writing on parchment,
since few people could read. However, as more people bedtaraé, encryption had to become more
sophisticated. A common encryption method that has sutitivenodern times is substitution — replacing
"e” with "p”, "t" with "i”, ... , for example. A consistent subtitution, such aslwaysreplacing "e” with
"p”, "t” with "1, ... is relatively easy to decode. With enagh ciphertext and patience, one can, by hand,
decode the message. You simply observe that certain lertersore frequent than others. For example,
in English, "e” occurs about 15% of the time and in German i@ % of the time, versus about 4% if
all letters were equally likely. With a computer, breakihg tode becomes trivial, especially if it stores
statistics on the occurrence of letters in plaintext, stiag on letters that occur at the beginning of words,
statistics on combinations of letters, and dictionaries.

To avoid the vulnerabilities of consistent substitutiornyptologists have used keystreams. Often a
binary keystream of (pseudo)random bits is exclusive OR##ul thve bits encoding letters. In this way,
each plaintext letter is encoded as a different cypherédtard each time.

For more than 50 years, cryptologists have studied the uB®alean functions in keystreams. In-
deed, Shannon [11] discussed the usdifftisionandconfusionin secure communications. Diffusion
occurs when a small change in the input text creates a laggeehin the encoded text. Confusion occurs
when the nonlinearity of the system creates a hurdle agaétsyption using a linear attack.

The most nonlinear of all Boolean functions are the benttions. Introduced in 1976 by Rothaus
[7], bent functions are as far away from linear functions assible. By "far”, we mean in the Hamming
distance between their truth tables. However, there exigtgadox. It is easy to identify whether a given
function f is bent. One simply applies a distance test. On the other, litdadn entirely different matter
to efficiently generate all bent functions. Some constandiexist for generating bent functions from
other bent functions. However, an efficient way to genealitbent functions remains to be discovered.

In this paper, we present a sieve process in which many pectgpéunctions are tested for bentness.
We show results obtained from this approach. A special featfithis analysis is the use of a recon-
figurable computer, the SRC-6. With this approach, we are &bachieve a speedup of 60,000 over a
conventional computer.

In the next section, we introduce the background and netalioSection 3, we discuss the program-
ming of a reconfigurable computer for generating bent fumsti Next, we discuss a method to improve
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the throughput of the reconfigurable computer, and we sh@egraxental results that suggest the extent
to which throughput can be improved. In Section 5, we givédydital results, and in Section 6, we give
concluding remarks.

2 Background and Notation

It is convenient to represent the truth table ofrawvariable function by a string 02" bits. For ex-
ample, f1(z1, z2,x3,24) = T1222374 IS represented a87(f;) = (0000000000000001), and
fo(z1, 22,23, 4) = X122 D w3214 IS represented d87'(f2) = (0001000100011110).

It is also convenient to representafvariable function in its algebraic normal form. Specifigal

Definition 2.1. Thealgebraic normal form (ANF) of a functionf is f = »_ g, ca®]'@5” ... 20",
where}” is the exclusive ORy = (ay, a, . . ., an), Ca,a; € Fo, 29 = 1,andz} = z;. (coc1 ... can_1)

is theANF representationof f.

Example 2.1. f; = z1x2x324 has the ANFf = zi202524 and the ANF representaticAN F'(f1) =
(0000000000000001). fo = z122 @ x324 has the ANFfy = z129 ® z324 and the ANF represen-
tation ANF(f2) =(0001000000001000). (End of Example)

The algebraic normal form of a function is also known as th&tp@ polarity Reed-Muller form.

Definition 2.2. Alinear function is the constant O function or the exclusive-OR ef@rmore variables.
Anaffine function is a linear function or the complement of a lineandtion.

Example 2.2. There are 16 linear functions on 4 variables;Q, xs, 3, x4, 1 ® T2, 1 ® T3, T1 D X4,
To®Dx3, ToDTyg, T3DT4, T1DX2DT3, T1DT2D x4, T1DT3DT4, ToDT3DT4, ANAT1 Dr2Pr3Dx4. Thed-
variable affine functions consists of these functions aat tomplements. Note thatgfz1, z2, ... x,)
is a linear function in ANF, then the ANF of its complemeritds g. (End of Example)

Definition 2.3. TheHamming distanced(f, g) between two functiong and g is the number of places
where their truth table representations differ.

Definition 2.4. Thenonlinearity NL¢ of a functionf is the minimum Hamming distance betwgemnd
an affine function.

Example 2.3. f = zix22324 has nonlinearity 1, since converting the single 1 to a O irtrih table
representation creates the truth table representationhef ¢constant 0 function, which is affing. =
r122Dr3xy has adistance 6 or 10 from any affine function. Thus, its mealiity is 6. (End of Example)

Definition 2.5. Let f be a Boolean function on-variables, where: is even.f is abent function if its
nonlinearity is maximum amongvariable functions.

Example 2.4. Rothaus [7] showed that bent functions have nonlineatity! — 22!, Thus,f =
r1x2x3z4 ISNOtbent VL = 1), andg = z1x2 G x3z4 is bent (VL, = 6). (End of Example)

Definition 2.6. Thedegree of a product termis the number of variables in that term. Ttegree of a
function f is the maximum of the degrees among the product terms in tReoAN

Example 2.5. f = x1z2x324 has degree 4 ang = x1x2 @ x324 has degree 2. (End of Example)

Definition 2.7. Functionsf andh belong to the samaffine classif and only if f = h & a, wherea is
an affine function.

Example 2.6. f = x1x9x324, @ Non-bent function, belongs to an affine class of 32 funstig =
x122 @ w324, @ bent function, belongs to an affine class of 32 functions. End(of Example)

Each affine class contains the same number of functions, Iga2fie!. Also, all functions in the
same affine class as a non-affine functjphave the same degree. This is because the ANF’s of two
functions in the same affine class differ only in the lineadt aonstant coefficients. This same statement
is not true of the affine class of affine functions. In this class, ibatrivial functions have degree 1,
while the two trivial (constant) functions have degree O.



3 Programming the SRC-6 Reconfigurable Computer to Sieve Ben
Functions

The SRC-6 reconfigurable computer is a product of SRC Comgutdnich was formed b$eymourR.
Cray in 1995. It has two Intel Pentium Xeon microprocessarsitbh which the user interfaces with the
FPGAs. There are 10 FPGAs, four Xilinx Virtex-1I XC2V6000asix Virtex-Pro XC2VP100 FPGAs.
These are high-end FPGAs with more than 6 million transistaich. All run at a fixed clock frequency
of 100 MHz. To access the machine, one logs onto one of the tismprocessors, compiles the code
(some of which runs on the microprocessor and some on the E);And then executes it. During
execution, both the microprocessor and FPGAs are execliorghe sieving of bent function, we used
three programs 1) C code that runs on the microprocessonitiades the process and prints/stores the
data obtained, 2) C code that runs on the FPGA and enumehatéaictions under test, and 3) Verilog
code that runs on the FPGA and does most of the computatioead® the burden on the programmer,
SRC Computers has supplied many system macros for use ingZapns. This has helped to eliminate
the need for Verilog code. However, we found that Verilogeads an absolute necessity. Fig. 1 from
[14] shows the SRC-6’s compilation process, including eland route. Here, the box labeledProc
Compiler” corresponds to code that is compiled into machaode that runs on the microprocessor, while
the box labeled "MAP Compiler” corresponds to code that impided into circuits on the FPGA. This
includes both C code and Verilog. Verilog code, in our versibthe SRC-6, is compiled using Synplify
Pro®.

Application
Source

MAP Place and

pProc

Compiler

Compiler - Route

Application
Executable

Figure 1: The SRC-6’s compilation process [14].

Fig. 2 shows a circuit that enumerates all functions and edewtheir nonlinearity. On the leftis a
counter that runs through all truth tables. This is describeC, and runs on the FPGA. To its right, the
circuit labeled "Nonlinearity Computation” is described\Verilog and runs on the FPGA. To its right is
an oval labeled "Update NL Counter”. This data collectiontjidone on the microprocessor. The data
it collects is exported to either Excel or MATLAB for display

Function
Under

Function | Test Nonlinearity
Generator »| Computation

Update
NL Counte

Figure 2: The nonlinearity enumeration circuit.

Fig. 3 shows the architecture dbnlinearity Computation circuit of Fig. 2.Function shown on the



left is applied to a circuit consisting of a setiaf = 2™ bitwise exclusive OR gates, whose other input is
an affine function. The output of each is a distance vectavdetFunction and an affine function. The
number of 1’s in each distance vector is the distance thetiftmander test is from that affine function.
The circuitOnes Countcounts the 1's and produces a binary number that is this cdiaig circuit was
shown by Komamiya [5] (and reformulated by Sasao [13]) toehav elegant form as basic symmetric
functions expressed as the exclusive-OR of product ternes.u$g 4-input LUTs and binary adders to
realize this circuit, which is easily scaled acressvheren is the number of variables. Simple ripple-
carry adders are highly optimized for speed in the Xilinxt&-Pro FPGA, and can be easily adapted to
any reasonable wordwidth.

Affine AF] 2 v Distance vectors

v oM
Function 2, | Ones to affine func-
tions

Minimum =
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Truth
Table

Figure 3: The architecture of the Nonlinearity Computationuit [10].

Fig. 4 shows thé®nes Countcircuit of Fig. 3. The 4-input LUTs are shown on the left sideset
of three of these forms a 3-bit binary number that is 000, 020, 011, and 100, corresponding to 0, 1,
2, 3, or 4 1's in the four inputs. These are applied to a treeddEes whose output is a binary number
representing the number of 1's in the distance vector.

Fig. 5 shows theMinimum Circuit of Fig. 3. Like theOnes Countcircuit, it is a tree. In this
case, theMinimum circuit consists of 2-input 1-output comparator circuitsathich the output is the
minimum of the two inputs.

Note that the Nonlinearity Computation circuit is combioagl logic. Unfortunately, its delay ex-
ceeds 10 nsec., which is the period of the SRC-6's 100 MHzcldbterefore, in order to process one
function in each clock cycle, it is necessary to pipelineNwalinearity Computation circuit so that the
delay in each stage is 10 nsec. or less. For example, in camggbe bent functions for = 6, the Non-
linearity Circuit needed eight stages. Since many prospefitnctions must be tested, the additional
latency due to the pipeline has little effect on the time ad@mxion. Indeed, we ignore it in determin-
ing the time of execution. Table 1 from [10] compares the cotaton times required by an FPGA on
the SRC-6 reconfigurable computer with the computationgineguired by microprocessor used in the
SRC-6. The latter is an Intel Xeon microprocessor running.8tGHz. Table 1 shows in the first
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column, the time for the Xeon microprocessor in the secomahen, the time for the FPGA in the third
column, and the speed-up factor in the right column. The dpgefactors range from 39.9 times for
n = 210 62,111 times fon = 8.

Forn > 6, the computation times for both the microprocessor and FR@¥e too large to run to
completion. In the case of the FPGA, we can calculate an ateuunning time. In the case of the
microprocessor, we ran the program over a subset of allifumeand then prorated to obtain the time it
would take to enumerate all functions.

Do we benefit from a speed-up when neither the FPGA nor theopriocessor can enumerate all
functions? Indeed, the answer is Yes. For example, Rothfushpwed that all bent functions are
contained in a set of functions whose degreé isr less. Since the cardinality of this set is much less
than the set of all 6-variable functions,istpossible to enumerate all 6-variable bent functions by the
FPGA. Indeed, by enumerating only functions with degrees &ss, it required 5.7 minutes on an
FPGA. However, it would have taken 27 days on the microprsmesvhich is 6,805.9 times longer, as
indicated in Table 1. We also achieved the 62,111 speedaqeiaded withn = 8 variable functions. In
this case, we enumerated all 8-variable rotation symmttrictions (c.f. Cusick and P. Stanica [2]) and
showed that the distribution of such functions is similattte distribution ofall functions with 4 and 5
variables [10].

Table 1: Speed-up obtained by the SRC-6 reconfigurable ctemfii0]

n PC Compute SRC-6 Compute|| Speed-up
Time Time Factor
(@2.8 GHz.) (@100 MHz)
2 6.38usec. 0.16usec. 39.9%
3 457.0usec. 2.56usec. 178.5x%
4 0.388 sec. 655.4usec. 592.0x
5 25.338 hours| 42.9 sec.| 2,126.3x
6 || 39,807,788 years 5,840 years|| 6,805.9x
7 || 2.05 x 10%" years| 1.08 x 10%% years| 19,005x
8 || 2.28 x 10% years| 3.67 x 10! years| 62,111x

4 Improving the Throughput

Although the FPGA has a much slower clock than the microm®sme its speed of computation is much
faster because of parallelism. For example, the many adldére Ones Countcircuit operate simulta-
neously in an FPGA, while these additions must be performeaeéiial on the microprocessor. However,
in spite of this improvement, the throughput of the FPGA caimtiproved further. We describe this here.
Unlike the previously discussed circuit, the followingatiit has yet to be implemented.

One way to improve throughput is to simply replicate theuwirand simultaneously apply different
functions for testing. An inefficiency exists because of ynanneeded tests of the distance to an affine
function. That is, it is sufficient to declare a function asirzent if it fails one distance test. Yet, in all
the implementations discussed so far, for every prospeb#wt function, all distances are computed.

To achieve greater throughput, we proposedineular pipeline. In its simplest form, there ar&®
stages, where each stage tests the resident function tgéiresar function. If the resident function is not
a bent distance (either @f—! + 27/2-1) to the linear function, it is discarded and replaced by heot
function. If the resident function is a bent distance, it m®wnto the next stage. A function is bent if it
passes through all stages. Note that it is unnecessarnt gaisist all affine functions; a function that is
a bent distance from all linear functions is a bent function.

Fig. 6 shows the architecture of the circular pipeline. Gnl#it, 2™ function truth tables are clocked
into registerin through a MUX. On the right; truth tables leave this register and are inserted into the
circular pipeline, wheré < i < 2™. We assume that any or all of the truth tables frionteave and are
inserted into the circular pipeline. Those truth tableg #ra not inserted into the circular pipeline are
inserted into registeReservoir This process is special. RegisiReservoirs similar to a shift register.
However, it has an interconnection matrix, showrSagtch Networkthat assures there are no "gaps”



caused by elements of registerthat went into the circular pipeline. Regist@eservoirstores2™*!
truth tables. These are truth tables that failed to go inéoQincular Pipelinebecause of a truth table
that passed one test in tlércular Pipeline TheSwitch Networlassures that the bottom register is fully
occupied with truth tables when it is applied to regidter When this is applied tén, then the rest of
registerReservoiris moved down.
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Figure 6: Architecture of the circular pipeline

This circuit is significantly more efficient than any we havegosed previously. This is because any
function that fails a test is ejected immediately. Howeitsrefficiency depends on the extent to which
non-bent functions fail a test for bentness. For example,rttethod would not be so efficient if most
non-bent functions had many bent distances to linear fanstiConversely, this method would be very
efficient if only bent functions were a bent distance awayrfimear functions. Indeed, in this case, it
would be necessary only to test whether a function was a bstange from any linear function. This
presents us with a very interesting question: "How long asillnon-bent function persist in the circular
pipeline?”

A partial answer was derived by simulating the circular pipefor 4-variable functions. In this
experiment, the truth tables were applied lexicographjicas$ (0,0, .. .,0,0,0), (0,0,...,0,0,1), (0,0,
...,0,1,0),...,(1,1,...,1,1,1), to a software simulation of the circular pipeline. Fronsthire com-
puted the distribution of clock periods that a function $ugd the pipeline. Fig. 7 shows the distribution
of functions to the time spent in the pipeline. For examp®698 of the 65,536 or 76% of the 4-variable
functions stayed in the pipeline for only one clock periodl3® or 12% stayed in the pipeline for only
two clock periods. 896 functions stayed in the pipeline férclock periods. This last observation is an
expected result, since 896 functions are bent. The numbimes a function stays in the pipeline is
called itspersistence The average persistence is surprisingly small, 1.65.ddgigom the data shown
in Fig. 7, we can declare a function to be bent if it stays ingipeline for 10 or more clock periods. That
is, no non-bent function persists in the pipeline for 10 orendock periods. Knowing this would save
some clock periods overall, since 896 of the 65,536 funstiwould have to stay in the pipeline only 10
clock periods instead of 16. We are interested in analyZiaghroughput of the circular pipeline.

Definition 4.8. The throughpuf’, of a circular pipeline forn-variable bent functions is

on
Pavg ’

T, = 1)

whereP,,, = 22% Zfio’l P(f;) is the average persistence, fBY(f;), the persistence of functiofy.

We know thatl < T,, < 2™. The lower bound occurs if all functions envariables are bent. The
upper bound occurs if every function is non-bent (and thaits fts test immediately). For example, if



15000

10000

Number of Functions

5000

896

219 232 251 227 .
0 1 1 1

0 2 4 6 8 10 12 14 16 18
Persistence in Circular Pipeline

Figure 7: Distribution of Functions to Persistence in a @lisc Pipeline fom = 4

P, = 1 (every function stays in the pipeline for exactly one cloekipd), therl,, = 2", because, at
every clock all2™ functions in the pipeline are replaced &% new functions. This continues until there
are no more functions. Thus, in the sieg® functions are examined every clock period.

From this, we can say, for the 4-variable example, That 22/1.65 = 9.7. That is, with the circular
pipeline, we can expect a throughput of nearly 10 times thtteocircuit shown in Section 3. Note that,
in this calculation, we daottake advantage of the fact that a function can be declareihineiremoved
from the pipeline after it has passed 10 stages.

If a function has zero bent weights, its persistence in Figs Z. However, a function with one
or more bent weights may also contribute to the functiond pirsistence 1. This is because such a
function was placed in the circular pipeline in a stage thated it against a linear function which was
not a bent distance away. From this we conclude that thakiisitsn of functions to persistence may be
different depending on the order in which functions are @thinto the circular pipeline. Therefore, we
seek a persistence measure that is independent of this order

Definition 4.9. Ann-variable function is said to havelzent weightif at least one distance to an affine
function is2”~1 + 2/2-1 (the bent distance).

Example 4.7. An affine function has no bent weights. A bent functiontds bent weights, the maxi-
mum. (End of Example)

Fig. 8 shows the distribution of 4-variable functions to thenber of bent weights. For example, the bar
on the extreme left shows that 33,920 functions have no beigthts, while the bar on the extreme right
shows that 896 functions have 16 bent weights. The lattetharbent functions. Near the middle are two
bars. These show that 3,840 functions have seven bent weighile 26,880 have eight bent weights.
For such functions, the distances to affine functions ar&léi/nearly in half between bent distances
and non-bent distances. Assuming these functions entairtidar pipeline randomly, we expect that
approximately half of the time they will pass to the next stagd half of the time they will be rejected.
Note that all functions with 0 bent weights stay in the pipelfor one clock period. If a functions has
1 bent weight, it stays in the pipeline for either one or twoc&l periods. Similarly, functions with 8
bent weights stay in the pipeline for one, two, ... , or nirecklperiods. Thus, we see in Fig. 7 a small
number of functions (227) with persistence 9. For such atfangcthe highly unlikely case occurred in
which all the eight stages through which it passed corredpoto the linear functions from which it was
a bent distance away. Bent functions stay in the pipelind.oclock periods. They are ejected after 16
stages (not 17) even though they pass the last bent test.

It is interesting to note that the histogram of Fig. 7 showssa in the number of functions with
persistence 6 through 9. This is likely due to the conceiotnaif 4-variable functions with 7 or 8 bent
weights. Indeed, there are three (local) peaks in the nupitfanctions with various persistence values
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(in Fig. 7) corresponding to the three peaks in the numbeaumdtions with various bent weights (in Fig.
8), near 0, 6-9, and 16.

The results of Fig. 8 beg the question of the bent weights of 4. For example, does the large
number of functions with O bent weights also occur for> 4? What form does the distribution of
functions to the number of bent weights take for other nonthenctions?
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Figure 9: Distribution of Functions to the Number of Bent @las forn = 10 (262,144 samples)

To answer these questions, we repeated the analydisranable functions on 10-variable functions.
It is impossible to enumerate allvariable functions fon > 6 because of excessive computation time.
However, one can enumerate randoafaariable functions. Doing this fat = 10 yields the plot of Fig.
9. The left plot shows the full plot. There are a large numbiéuniactions, 131,000, with no bent weights
(i.e. about half of all samples). This is shown as a singkedin the extreme left. Just to its right is a small



group of functions where the number of bent weights is apprately 64. Bent functions have 1024 bent
weights, and they would be on the right, as indicated by th@mxarBecause the sample size, 131,000, is
so small compared to the total number of functiai8?*, no bent functions were enumerated. Indeed,
the largest number of bent weights in any non-bent functias ¥ound to be 151. The right plot is an
expanded version of the left plot. It shows clearly a disttitn of functions centered arourid bent
weights. This plot shows that the majority of the functioresud drop out of the circular pipeline after
90 clock periods. In the case nf= 10, the circular pipeline is 1024 stages long. Indeed, sinnetfans
with approximately 64 bent weights, and 64 is only one-ginth of 1024, most functions will drop out
well before 90 clock periods. In the caserof= 10, the bent weights ar¢96 and528.

Lemma 4.1. Let f andg be two functions in the same affine class (i.e. there existdfare functiom,
such thatf = g @ h). Then,f andg have the same number of bent weights.

From Lemma 4.1, iff has2™ bent weights, therf is bent and so are all functions in the same affine class
asf. One seeks then an affine class in which all functions haveyrmant weights that also contains a
balanced function.

This suggests a new kind of nonlinearity. Functions thaetabent weights in Fig. 8 are closer
to bent functions than any other functions. Indeed, it casd®n, that a substantial number of these
functions are balanced; i.e. 10,080 of them have 8 1's and.810is also interesting to note that such
functions can have nonlinearity no greater than 4, sincerttalest weight is 4 among the functions that
have 8 bent weights. Among 4-variable functions, the lameslinearity a function can have andtbe
bentis 5.

5 Analytical Results

Lemma 5.2. The number of functiond (N L, w) with nonlinearity N L and weightw is

2n
N(NL,w) = < ) for0 < NL =w < 2"2 )
w
on—h\ /on—1 where w = 2"t — py; +
— n+1 _ P1 T Po,
N(NL,U)) - (p0)<p1 )(2 2)7 fOYOSNL:p0+p1§2n72—1. (3)
2n
N(NL,w) = <2 > for0 < NL =2" —w < 2"2. 4)
" —w

Proof: For all but two exceptions, the functions described abowethe smallest distance to a single
affine function. For example, the functign= x5 ...z, with one 1 entry is a distance 1 away from
the constant O function (and a larger distance away from #iko affine functions). The two exceptions
correspondto (2) foNL = w = 2"~2 and (4) forNL = 2" — w = 2"~2. Consider the first case only;
the second is similar. This corresponds to functions thaehaeight2” 2, and so are a distancz® 2
from the constant 0 function. Among these functions are sbatare a distanc€”~? from non-trivial
affine functions, but at no greater a distance. It followst tthee non-linearity of all functions of weight
2n=2jg "2, 1

Lemma 5.3. A function has odd weight iff it has odd nonlinearity.

Proof: All affine functions have even weight. flhas even weight, all distances to affine functions are
even. Thus, the smallest distance is even, and it follovighieanonlinearity off is even. Conversely, if
the weight off is odd, then all distances to affine functions are odd. Thdlsstalistance is odd, and so

f has odd nonlinearity |

Lemma 5.4. At least one-half of all functions have no bent weights.

Proof: Half of all functions have a truth table with an odd number & 1From the proof of Lemma
5.3, all distances between such a function and an affineifumatre odd. Since a bent weight is even,
functions with odd weight have no bent weights 1

Lemma 5.4 explains why more than half of all functions haveébant weights, as observed in Figs. 8
and 9.
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Figure 10: All distributions of functions to dis- Figure 11: Distribution of functions to weights
tances to affine functions for = 4. with the distance distributions in Fig. 10.

5.1 Distribution Among Distances to Affine Functions

We can gain insight into the distances between functionsadiinte functions, by considering the dis-
tribution of distances. Fig. 10 shows the distribution aftdihces to affine functions among 4-variable
functions with various nonlinearities. For example, the péot shows the distance distributions for affine
functions. That is, for any affine functioh f is a distance 0 from an affine function (itself); it is a dis-
tance 16 from another affine functiofi)( and, it is a distance 8 from all of the other 30 affine funasio

In the case of a functiofi with nonlinearity 1,f is a distance 1 from an affine function, a distance 7 from
15 affine functions, a distance 9 from 15 affine functions, artistance 15 from one affine function.
This is shown in the second plot of Fig. 10. The last plot of Hig shows the bent functions. Here, each
bent function is a distance 6 from 16 affine functions and &dcse 10 from the other 16 affine functions.
Itis seen from Fig. 10 that, as the nonlinearity increagesgistribution of distances to affine functions
narrows. This is expected, since nonlinearity is a meaduteeanaximundistance to affine functions.

Fig. 11 shows the distribution of functions with various hoearity values according to the func-
tion’s weight. For example, the top plot of Fig. 11 shows tleribution of weights for all functions
with nonlinearity O, the affine functions. One has weighth® tonstant O function, one has weight 16,
the constant 1 function, and 30 have weight 8.

It is interesting that, in Figs. 10 and 11, that there tare distributions for nonlinearityVL; = 4.
The first, where four functions are a distance 4 from affinecfioms, 24 are a distance 8, and four
are a distance 12, correspond to products of two variables.ekample,f = x;x2, whereTT; =
(0000000000001111) are a distance 4 from the four affine functions

g1 = 0(T'T,, = (0000000000000000)),

g2 = 1(TT,, = (0000000011111111)),

gs = x2(TT,, = (0000111100001111)), and

gs = 1@ 1 ® 22(TT,, = (1111000000001111)) .

Further,f = x4 is a distance 12 from the complement of these functions. Ansla distance 8
from the remaining 24 affine functions. Note that this cheares functions with this distribution of
distances to affine functions. Namely, they are the AND ofwnotrivial affine functions exclusive ORed
with an affine function. The functions associated with theeodistribution of distances corresponds to
all other functions with weight 4 or the exclusive OR of thésections with an affine function.

Note that all 4-variable functions with nonlinearity< NL < 3 are the minimum distance from a
uniqueaffine function. All 4-variable functions with weight 4 hawenlinearity NL = 4. This same
statement isiottrue of functions with nonlinearit}) < NL < 6. Forn = 5, there are(156) = 4,368
functions with weight 5, but only 2,688 of them have nonlirigeb. And, forn = 6, there are(’y) =
8,008 functions with weight 6, but only 448 of them have nonlingaBi. The functions with weight 5 or
6 but not nonlinearity 5 or 6, have a lower value for nonlityaFor example, there are 2,688 functions
with nonlinearity 5 and weight 5. We would compute this by erving that the only other nonlinearity
of 5 and weight 5 occur for functions with nonlinearity 3. T@are 1680 such functions. However, there
are(156) = 4368 total with weight 5. Thus, the number of functions with weighand nonlinearity 5
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Figure 12: All distributions of functions to dis- Figure 13: Distribution of functions to weights
tances to affine functions for = 5. with the distance distributions in Fig. 12.

must be(156) — 1680 = 2688. This gives one hope for computing the other values of nealiity and
weight.

There are two sources of function with nonlinearity 4. Foeotle function is a distance 4 from 4
affine functions, a distance 8 from 24 affine function, andstadice 12 from 4 affine functions. These
functions have the form; g-, whereg,; andg, are distinct nontrivial affine functions that are not com-
plements of each other. For example, for= x; andg, = x2, the functiong; 9o = x1x5 is a distance
4 fromgi, g2, 1 ® g1 @ g2, and the constariXfunction. It is a distance 12 from the complement of these
four functions, all of which are also affine. And, itis a diste 8 from the other 24 affine functions. How
many functions have this distribution of distances to ttimafunctions? Among the 30 nontrivial affine
functions, there ar@o) — 15 = 420 ways to choose distinct pairs of functions that are not cemgints
of each other. However, this number triple counts the nunolelistinct functions. That isg;gs IS
formed fromg; ANDed with go. But, there are two other pairs of distinct nontrivial afffoections that
are not complements of each other that can fgrgs, namely the pairs¢g andg;, & g2) and @1 & g
andgs). Thus, the total number of functions with this distributiof distances to the affine functions are
420/3 = 140.

The other set of functions with nonlinearity 4 have 1680 fiores of weight 4 that are have nonlin-
earity 4, as shown in Fig. 11. There grg) — 140 = 1, 680 of these.

Fig. 12 shows the same data for= 5 as Fig. 10 does fon = 4. Here, there are too many bars
to label. But, the x-axis shows the distances a function ca o the 64 5-variable affine functions.
The y-axis shows an index for the 40 possible distributiofsd, the vertical axis shows the number
of functions. Note that this is not theg of number of functions; instead is the actual number. The
functions with high nonlinearity are in the front (to thehiy) Interestingly, there are two distributions
with maximum nonlinearity, 11, one correspond to 3 distanaed the other 5 distances. This is to
be compared to the case of bent functions (and even numbariafles), where there are always 2
distances.

Fig. 13 shows the distribution of weights of functions thavé the distance distributions shown in
Fig. 12. This shows that the functions are concentratedamrrdigions of higher nonlinearity and this
number then drops off rapidly near the highest nonlinearity

6 Concluding Remarks

We have demonstrated that there is a significant advantagsrtg a reconfigurable computer to sieve
for bent functions. A speedup in computation time of moreté@,000 times is possible because of the
large amount of logic that can be configured to an architedtleally suited to the problem. For example,
Figs. 4 and 5 show that many simultaneous additions and casopa are needed. Although these are
performed much more slowly on an FPGA than on an Intel pracessp, they can be replicated enough
times that one function is tested every clock period of th& KB 100 MHZz's clock. The code is easily

scalable. The use of parameters in Verilog allows the nurobeariables to be specified in the top



module and then transmitted down to lower level modules.

It is likely that other problems are as well-suited to conapion by reconfigurable computer. For
example, [1] discusses three cryptographic propertieit stvalanche criterion [3], [4], propagation
criterion, and correlation immunity [12], that potentigiave efficient FPGA architectures. Still another
cryptographic property, algebraic immunity [6] may alsedefficient architectures.

For implementation information on bent function discoveyreconfigurable computer, see [8] and

9.
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